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Magnetic fluctuation-induced charge transport, resulting from particle transport that is not
intrinsically ambipolar, has been measured in the high-temperature interior of a reversed-field pinch
plasma. It is found that global resistive tearing modes and their nonlinear interactions lead to
significant charge transport, equivalent to the perpendicular Maxwell stress, in the vicinity of the
resonant surface for the dominant core resonant mode during magnetic reconnection. Finite charge
transport can result in a zonal flow associated with locally strong radial electric field and electric
field shear. In the presence of stochastic magnetic field, radial electric field is expected to be
balanced by radial electron pressure gradient. Direct measurement of local density gradient is
consistent with the formation of radial electric field and the zonal flow. © 2008 American Institute
of Physics. �DOI: 10.1063/1.2837047�

I. INTRODUCTION

Magnetic fluctuations have been long recognized as a
likely cause of anomalous particle, momentum and energy
transport in various magnetic confinement devices.1–5 In par-
ticular, particle transport due to stochastic magnetic fields is
not intrinsically ambipolar since electrons stream rapidly
along field lines. These stochastic magnetic fields can be
driven by global tearing instabilities that often underlie the
sawtooth oscillation and degrade overall confinement.1,3

Conversely, externally imposed magnetic perturbations �as in
ergodic divertors� can act to mitigate edge-localized modes
�ELMs� by locally enhancing edge transport without loss of
core plasma confinement6 and have generated new interest in
understanding the role played by stochastic magnetic fields
in transport.

Magnetic fluctuation-induced particle transport has been
studied for many years �see Ref. 4, and references therein�
but all previous measurements were made by probes and
consequently limited to the cooler edge region of hot plas-
mas. In the edge, it was found that particle losses induced by
magnetic field fluctuations were ambipolar.7–9 More recent
measurements, with probes that are inserted deeper into the
plasma,10 indicate that the difference between electron and
ion losses due to magnetic fluctuations could be nonzero.
Unlike electrostatic fluctuation-induced particle transport,
magnetic fluctuation-induced transport is not intrinsically
ambipolar. Any nonintrinsic ambipolar transport �i.e., finite
charge transport� across the equilibrium magnetic field will
change the radial electric field �Er� which adjusts to reflect

the imbalance between electron and ion fluxes. These fields
can then act to generate a zonal flow.

A radial electric field can in principle arise from multiple
plasma processes, e.g., classical and neoclassical diffusion,
ion orbit loss, pressure gradient or turbulence-driven Rey-
nolds stresses.11 Theoretically, a nonintrinsic ambipolar flux
driven by one mechanism can exist but must be balanced by
an opposing nonintrinsic ambipolar flux driven by another
mechanism to maintain plasma quasineutrality.12 Further-
more, it has been shown that the charge flux is not pointwise
zero for a localized normal mode and ambipolarity can still
be realized on a spatial average.13 This implies a local radial
electric field structure may exist as a consequence of finite
charge transport. The combined effects of radial electric field
and stochastic magnetic field play an important role in the
Madison Symmetric Torus �MST� reversed-field pinch �RFP�
and may also be relevant to other toroidal confinement de-
vices.

In this paper, we experimentally explore the case where
magnetic field lines become stochastic during the crash
phase of a sawtooth oscillation corresponding to a magnetic
reconnection event in the RFP configuration. Magnetic
fluctuation-induced charge flux related to the dominant core
resonant mode is measured directly using a nonperturbing,
high-speed, laser-based Faraday rotation diagnostic. Mea-
surements show that the radial charge flux from magnetic
fluctuations alone is nonzero ��1% of the total radial par-
ticle flux� and localized to the mode-resonant surface. This
charge flux by itself would lead to a huge radial electric field.
However, the effect is largely offset by the ion polarization
drift across magnetic surfaces. The net result, calculated
from the measured magnetic fluctuation-induced flux
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�including the inferred polarization drift, viscous damping,
and diamagnetic drift�, is a charge separation that produces a
potential well with large radial electric field and radial elec-
tric field shear, leading to a zonal flow at the resonant sur-
face. In the presence of stochastic magnetic field, the local
radial electric field is expected to be balanced by radial elec-
tron pressure gradient since electrons can freely stream along
stochastic field lines. The measured local density gradient,
−�ne /�r, transiently increases near the resonant surface dur-
ing a magnetic reconnection event, consistent with the pre-
dicted radial electric field structure. Furthermore, this mag-
netic fluctuation-induced charge flux is experimentally found
to depend on nonlinear mode-mode coupling to alter the
phase relation between current density and magnetic fluctua-
tions.

The paper is organized as follows: In Sec. II, we intro-
duce the concepts and general equations for stochastic mag-
netic field driven particle �and charge� transport, radial elec-
tric field, and zonal flow. Experimental measurement of
charge transport and electron density gradient are presented
in Sec. III. In Sec. IV, we discuss experimental results and
their implications. A summary of the paper and conclusions
are provided in Sec. V.

II. TRANSPORT IN STOCHASTIC MAGNETIC FIELDS

A. Particle „charge… transport due to stochastic
magnetic field

Stochastic magnetic field induced particle transport can
be described as the projection of the parallel particle flux
along the radial direction in a toroidal device,4,5

�r,� = ���,�b� · e�r� , �1�

where ��,� is parallel particle flux for species � �electron or

ion�, b� =B� /B is a unit vector of magnetic field, e�r is a radial
unit vector, and �¯� denotes a magnetic surface average.
Both the parallel flux and magnetic field can be decomposed
into mean and fluctuating components, i.e., ��,�=��0,�

+���,�, b� =b�0+�b� . Thus, the magnetic fluctuation-induced
radial particle flux can be written as

�r,� =
��j�,��br�

q�B
, �2�

where �j�,�=q����,� is the species current density fluctuation

parallel to the equilibrium magnetic field B� , and �br is the
radial magnetic field fluctuation while mean radial magnetic
field is zero. The difference between electron flux and ion
flux is defined as charge flux ��q�,

�q = �r,i − �r,e =
��j��br�

eB
, �3�

where �j� is the net parallel current density fluctuation. Since
�q��r,i ,�r,e, it is not feasible to accurately determine the

charge flux by measuring parallel electron and ion fluctuating
fluxes separately and taking their difference. However,
charge flux can be directly obtained by measuring magnetic
field fluctuations only since parallel current fluctuations can
be related to magnetic fluctuations via Ampere’s law.

It is useful to express Eq. �3� in a form most suitable for
experimental determination. For simplicity, we derive an ex-
pression in x ,y ,z coordinates where the equilibrium mag-

netic field is B� =Bye�y +Bze�z and the magnetic perturbation is

�b� ��b��x�exp�ikyy+ ikzz�. The magnetic surface average
�¯� is defined as 		dydz and �i�bj�bj�=0 �j=x ,y ,z� due to
� /2 phase difference between i�bj and �bj. Using Ampere’s

law, ���b� =�0�J�, we obtain

��j��bx� = ��jy�bx�
By

B
+ ��jz�bx�

Bz

B

= −
1

�0

�bx

�

�x
�bz�By

B
+

1

�0

�bx

�

�x
�by�Bz

B
.

�4�

From Gauss’s law, � ·�b� =0, we substitute �bz=−ky /kz�by

+ i /kz� /�x�bx into Eq. �4� and generate the expression

��j��bx� =
1

�0kz
�ky

By

B
+ kz

Bz

B

�bx

�

�x
�by�

=
1

�0Bkz
�k� · B� �
�bx

�

�x
�by� . �5�

By noting that ��jz�bx�=1 /�0���by /�x�bx�, we can write the
charge flux as

��j��bx�
eB

=
1

eB2kz
�k� · B� ���jz�bx� . �6�

By now switching to cylindrical coordinates �x→r ,y→� ,z
→	� which is appropriate for MST plasmas, the flux-
surface-averaged quantity can be rewritten approximately as

�q =
��j��br�

eB
�

R

neB2 �k� · B� ���j	�br� , �7�

where k� ·B� =n /RB	+m /rB�, and 	, �, and r are the toroidal,
poloidal, and radial directions, respectively. An additional
term arising in cylindrical coordinates, ���br�b�� /r2, is not
included in Eq. �7� as it is found to be small in the vicinity of
the resonant surface, ��r−rs� /rs��1, where rs is the resonant
surface location.14 From Eqs. �6� and �7�, it becomes clear
that the charge flux is zero at the mode resonant surface since
k� =0 and changes the sign across the resonant surface due to
the magnetic shear. Thus, charge flux can be experimentally
obtained by measuring all quantities in Eq. �7�.

B. Transport and perpendicular flow

For low-frequency electromagnetic and electrostatic
fluctuations �
�
ci�, where 
ci is ion gyrofrequency, the
total radial flux of ions ��i

T� and electrons ��e
T� can be written

in the form,13,15
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�i
T = niVi

r =
nM

eB0

��V�
i �

�t
−

F� �,i
c � B� 0

eB0
2 +

��j�,i�br�
eB0

+
�ñiẼ��

B0
,

�8a�

�e
T = neVe

r = −
nem

eB0

��V�
e �

�t
+

F� �,e
c � B� 0

eB0
2 −

��j�,e�br�
eB0

+
�ñeẼ��

B0
. �8b�

These two equations are equivalent to the ion and electron
perpendicular momentum equations, respectively.

The first term on the right-hand side is ion �electron�
drift due to ion �electron� inertial force. The second term is

the ion �electron� F� �,i
c �B� 0 �or F� �,e

c �B� 0� drift, where

F� �,i
c �F� �,e

c � is the classical collision force density acting on
ions �electrons� within the magnetic surface perpendicular to
B0. The third term is the magnetic fluctuation-induced ion
�electron� particle flux �see Eq. �2�� and the last term is the
electrostatic fluctuation-induced convective particle flux,

where Ẽ� corresponds to perpendicular electric field
fluctuations.4 Global quasineutrality requires �i

T−�e
T�0.

Thus, by evaluating the difference between Eqs. �8a� and
�8b�, we find

�
�

�t
�V�

i � − ���2�V�
i � = ��j��br� = eB0�q. �9�

Since the electron inertial and collision terms are negligible
compared to ion terms, we only keep the ion collision term
F�,i

c =−���2V�
i , where v*=�� /���0.3ZeffnkTi /
ci

2 �i�, and
�, Zeff, �i are mass density, effective ionic charge, and colli-
sion time, respectively.16

According to Eq. �9�, perpendicular flow is driven by
magnetic fluctuation-induced charge flux and dissipated by
classical perpendicular viscosity. Charge flux is essentially
equivalent to the perpendicular Lorentz force or Maxwell
stress. The fluctuation-induced perpendicular Lorentz force

is ��j���b���=1 /�0�� ·�b��b���, where ��b��b�� is referred to
as the Maxwell stress tensor.17 Within the magnetic surface,
this force induces radial charge flux

��j� � �b��� � B� 0

B0
2 =

��j��br − �jr�b��
B0

�
��j��br�

B0
�10�

since in the vicinity of resonant surface �k� �0��j� �jr�0
and �br��b� hold for the tearing instabilities.

Let us compare Eq. �9� to standard zonal flow equation
in a tokamak,17

�
�

�t
�V�� + ��V�� = −

�

�r
���vr�v�� −

1

�0
��br�b��� , �11�

where � is a magnetic pumping coefficient. It is worth men-
tioning that electrostatic fluctuation-induced charge transport
does not enter Eqs. �9� explicitly since its transport is ambi-
polar. However, charge flux can result from the perpendicular

ion Reynolds force F�
Re=nM��vr1 /r� /�rr�v�� driven by

electrostatic turbulence. This force is believed to generate
zonal flows in tokamaks.17 It is easy to recognize from Eq.
�9� that the perpendicular flow is driven by charge flux
�Maxwell stress, ��br�b�� term� and dissipated by classical
viscous force while Reynolds stress ���vr�v�� term� is ne-
glected.

C. Radial electric field and density gradient

Localized radial electric field is expected to be accom-
panied by a local density gradient according to radial force
balance for each species,

V�
i = −

Er

B
+ �Ti � ni

nieB
+

�Ti

eB
 , �12a�

V�
e = −

Er

B
− �Te � ne

neeB
+

�Te

eB
 . �12b�

A more direct relation between Er and �ne is obtained by
Harvey who treats electron dynamics arising from the sto-
chastic magnetic field.18 Global quasineutrality requires
Er=−Te /e �

�r �ln�neTe
1/2��, indicating that electrons nearly sat-

isfy adiabatic force balance along chaotic magnetic field
lines.19 If we ignore �Te and assume Te�Ti, we find Er

=−Te /e� 1
ne

�ne /�r�. Comparing Eqs. �12a� and �12b�, this
would correspond to V�

i �−2Er /B and V�
e �0. This heuristic

discussion leads to the radial electric field diffusion equation,
with a form similar to that of Eq. �9� for perpendicular flow,

�0��

��Er�
�t

−
��

B0
2 �2�Er� = −

��j��br�
2B0

, �13�

where �� is a perpendicular dielectric constant.
Equations �9� and �13� clearly indicate that the zonal

flow and radial electric field �or electron density gradient
from Eqs. �12�� can be driven by nonzero charge flux in
plasmas. This interrelation provides motivation to measure
the charge flux20 and search for a localized density gradient
associated with radial electric field formation.

III. EXPERIMENTAL RESULTS

Measurements reported herein were carried out on the
MST �Refs. 21 and 22� device whose major radius Ro

=1.5 m, minor radius a=0.52 m, discharge current
350–400 kA, line-averaged electron density n̄e�1
�1019 m−3, electron temperature Te�Ti��300–350� eV,
and Zeff=2–6. Equilibrium and fluctuating magnetic fields
are measured by a fast �time response up to 1 �s� Faraday
rotation diagnostic where 11 chords �separation �8 cm�
probe the plasma cross section vertically.14 MST discharges
display a sawtooth cycle in many parameters and measured
quantities are ensemble �flux-surface� averaged over these
reproducible sawtooth events. All fluctuation measurements
refer to the dominant core-resonant resistive-tearing mode
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�m /n=1 /6 where m and n are poloidal and toroidal mode
number� with laboratory frame frequency �15–20 kHz
whose resonant surface is located at r /a=0.35.

A. Charge flux measurement

The charge flux spatial profile is determined by measur-
ing the radial dependence of all quantities in Eq. �7�. The
radial derivative of �b� is directly obtained by measuring
current density fluctuations ��j	� using a novel polarimetry
analysis technique which invokes Ampere’s law to evaluate
the current density between adjacent chords directly.14,23 The
phase information between �j	 and �br is evaluated by en-
semble averaging. In MST, toroidal rotation of m /n=1 /6
magnetic modes transfers their spatial structure in the plasma
frame into a temporal evolution in the laboratory frame.
Since the magnetic modes are global, for convenience we
correlate �j	 to a specific helical magnetic mode obtained
from spatial Fourier decomposition of measurements from
64 wall-mounted magnetic coils. After averaging over an en-
semble of similar events, we can directly determine the phase
between �j	 and �b��a� for the specified mode. Since the
radial magnetic perturbation is expected to have a constant
phase at all radii for tearing modes �which has been verified
by probe measurements in lower temperature plasmas�, we
can infer the phase between �j	 and �br where the phase
difference between �br and �b��a� is � /2 at the conducting
wall. Toroidal current density fluctuations slowly increase
during the linear phase of the sawtooth cycle and surge at the
crash as shown in Fig. 1�a�. The phase ��� between toroidal
current density and radial magnetic field fluctuations is

nearly � /2 away from the sawtooth crash, making the cosine
of phase near zero as shown in Fig. 1�b�. This implies the
magnetic fluctuation-induced particle transport is approxi-
mately ambipolar. However, when approaching the crash, the
phase deviates from � /2 and fluctuation amplitudes increase
thereby generating significant magnetic fluctuation-induced
charge flux. The charge flux spatial maxima over a sawtooth
event is seen in Fig. 1�c�, and shows a peak of �4
�1019 m−2 s−1 at the crash. This is less than 1% of the mea-
sured total radial particle flux.24

The radial magnetic and current density fluctuation pro-
files have been measured for the dominant core resonant
�m /n=1 /6� mode just prior to the sawtooth crash.14,23 By
combining this result with equilibrium magnetic field
profile,24 we are able to obtain the spatial profile of charge
flux �or perpendicular Maxwell stress� �Eq. �7�� at a sawtooth
crash as seen in Fig. 2. Charge flux is zero at the resonant

surface because k� ·B� =0. However, on either side of the reso-
nant surface the charge flux is nonzero and changes sign due

to magnetic shear �i.e., k� ·B� changes sign across the resonant
surface�.

B. Origin of charge flux

The existence of nonvanishing charge flux in MST plas-
mas appears to require nonlinear interactions between mul-
tiple modes. Experimentally, observed changes in fluctuation
amplitude �Fig. 1�a�� and phase �Fig. 1�b�� during a sawtooth
crash act to drive the charge flux. In MST, resonant m=1
magnetic modes dominate the core magnetic fluctuation

FIG. 1. �a� Current fluctuations; �b� phase between current and magnetic
field fluctuation for m /n=1 /6 mode; �c� the charge flux. The t=0 denotes
the sawtooth crash.

FIG. 2. Magnetic fluctuation-induced charge flux �equivalent to the perpen-
dicular component of Maxwell stress� spatial distribution. Flux changes sign
across the resonant surface at r=0.17 m.
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wave number spectrum. In addition to the core resonant
modes, m=0 modes �which are observed as a burst at the
crash� are resonant at the reversal surface �r /a�0.8� where
the toroidal magnetic field goes to zero �near the plasma
edge�. Both the m=1 and m=0 tearing modes have a global
nature so that nonlinear mode coupling is common. Any
three-wave interaction has to satisfy the sum rule m1�m2

=m3 and n1�n2=n3. Coupling of two adjacent m=1 modes
via interaction with an m=0 mode has been shown to be very
important in both experiments and MHD computation.25–27

A typical strong three wave interaction observed in MST
plasmas is that between the �m=1, n=6�, �1,7� and �0,1�
modes. By suppressing one of the interacting modes, we can
reduce the nonlinear mode coupling. In order to identify the
role played by nonlinear coupling in the charge flux during
the sawtooth crash, we compare standard RFP plasmas with
those where the reversal surface has been removed �i.e., non-
reversed plasmas�. For nonreversed plasmas, the m=1 mode
amplitude ��b��a�� during the sawtooth cycle remains com-
parable to the reversed case. However, the m=0 mode am-
plitude is significantly reduced since its resonant surface is
removed. As shown in Fig. 3�a�, the charge flux for these
plasmas is reduced up to fivefold compared to standard RFP
plasmas seen earlier in Fig. 1�c�. This occurs primarily be-
cause the phase difference between �j	 and �br for the �1,6�
mode is also altered, deviating only slightly from � /2, as
shown in Fig. 3�b�. This suggests the phase change between
�j	 and �br for the �1,6� mode is related to nonlinear mode-
mode coupling.

C. Electron density gradient measurement

Local electron density gradient measurements have re-
cently been made possible using a newly developed differ-
ential interferometer technique.28 The differential interferom-
eter measures the difference of line-integrated electron
density �n̄e /�x between two very closely spaced chords �ef-
fective separation �x�1 mm�, where n̄e�x�=1 /L	ne�r�dz.

Evolution of ensemble-averaged line-averaged electron den-
sity gradient ��n̄e /�x� over sawtooth crash is shown in Fig. 4.
The electron density gradient shows no change just before
sawtooth crash for central chord �impact parameter x1

=0.06 m�. Near the resonant surface �x2=0.13 m�, line-
averaged electron density gradient �−��n̄e /�x�� transiently in-
creases by a factor of 2 immediately prior to a sawtooth
crash �−0.3� t�0 ms�. The line-averaged electron density
gradient does not increase away from the resonant surface
�x3=0.28 m� for the same time period. This suggests the
electron density gradient locally increases as opposed to glo-
bal density change. Locally, the sign of −��n̄e /�x� �for x2

=0.13 m� is positive �radially pointing outward�. Quantita-
tive measurement of diamagnetic drift requires a precise lo-
cal density measurement in addition to accurate density gra-
dient measurement. In principle, the local density gradient
can be obtained by inversion of the line-averaged measure-
ments. However, for the chords close to the magnetic axis,
one can estimate the local density gradient directly. From
the relation �n̄e�x� /�x= �1 /L�	��ne�r� /�r��x /r�dz= �1 /L�
�	��ne�r� /�r� cos �dz, we have �n̄e�x� /�x��n̄e /�r
�	 cos �dz=�n̄e /�r� �0.30�0.50�. Spatial resolution is
significantly improved due to the geometrical weighting fac-
tor cos���. Local density at sawtooth crash is measured to be
�0.7–0.8��1019 m−3, therefore the estimated equivalent
electric field �Er=−Te /e� 1

ne
�ne /�r�� due to density gradient

is 500–800 V /m at sawtooth crash.

IV. DISCUSSIONS

The experimentally determined nonvanishing charge flux
indicates that magnetic fluctuation-induced particle transport
is not intrinsically ambipolar and the radial electric field will
be altered. It is observed that magnetic fluctuation-induced
charge flux is about �4.0�1019 /m2s�. In the core of MST
plasmas, ion velocity fluctuations are measured to be the
order of 0.5–1 km /s. This leads to a maximum charge flux
of �0.6�1019 /m2 s if velocity fluctuations are 100% corre-
lated and have spatial scale �5 cm. Thus, the maximum ion
velocity fluctuation-induced charge transport is much less
than magnetic fluctuation-induced charge flux. Therefore ion

FIG. 3. �a� Magnetic induced charge flux dynamics over the sawtooth for
plasmas where the m=0 mode is removed; �b� phase between current fluc-
tuations and radial magnetic fluctuations where the m=0 mode is removed.

FIG. 4. �Color online� Electron density gradient dynamics over the sawtooth
crash for three impact parameters. Near the resonant surface �x2=0.13 m�
the electron density gradient increases at the sawtooth crash, which is asso-
ciated with the local increase of the radial electric field driven by charge
flux.
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Reynolds stress induced charge flux29 can be neglected in
Eq. �9�. Other effects such as neoclassical diffusion and
charge exchange are expected to be small in the core of MST
plasmas.

Consequently, the evolution of radial electric field can be
governed by Eq. �13� which is a diffusion equation for radial
electric field. The typical radial electric field diffusion time is
of the order ��a2 /v*�500 ms� where Zeff=6 is used for
estimation. This dissipation time is usually much longer than
a MST discharge ��100 ms�. However, the dissipation may
not be negligible if a small-scale radial electric field develops
as is implied near the mode resonant surface. To provide an
estimate of radial electric field, numerical integration of Eq.
�13� is performed using boundary conditions Er�0�=Er�a�
=0 along with the measured charge flux at the resonant sur-
face. Temporal dynamics of the computed radial electrical
field are shown in Fig. 5�a�. The radial electric field is small
and slowly increasing prior to a sawtooth crash due to a
small magnetic fluctuation-induced charge flux at this time.
A maximum is reached after a surge of charge flux at the
sawtooth crash while the polarization drift goes to zero
�dEr /dt=0� when the charge flux is balanced by electric field
diffusion. Since the charge flux diminishes after the crash,
the radial electric field decays on a longer time scale due to
viscous damping. It should be noted that the radial electric
field is dissipated within a few ms ����l�2 /v*� due to devel-
opment of radial electric field having local shear with scale
��l�5 cm� comparable to magnetic island width.

As shown in Fig. 5�b�, the saturated radial field spatial
profile �at t=0.25 ms� changes sign across the resonant sur-
face in a fashion similar to charge flux �see Fig. 2�b��. The
radial electric field points toward the resonant surface on
either side, indicating that a local potential well is created as
shown in Fig. 6. The potential perturbation appears as a su-
perposition on the equilibrium potential ��0�. A maximum

radial electric field of 1 kV /m is reached just after sawtooth
crash. The inferred radial electric field from charge flux is
consistent with the estimated electric field �0.5–0.8 kV /m�
by using electron radial force balance in Sec. III C, and at
r�rs has a positive sign, the same as that for the electron
diamagnetic field −Te� 1

ne
�ne /�r�. Although the inferred radial

electric field from charge flux has a qualitative agreement
with the measured electron density gradient change before
sawtooth crash, it is observed that density gradient relaxes
within a few hundred microsecond �see Fig. 4�, much faster
than the dissipation of radial electric field �1 ms �modeled
in the figure but not measured�. The quantitative comparison
between electron density gradient and radial electric field
structure requires a radial electric field measurement which is
expected in the future from the heavy ion beam probe on the
MST.

Perpendicular flow dynamics are the same as that of the
radial electric field as shown in Fig. 5�a� since the momen-
tum equation �Eq. �9�� has the same form as the radial elec-
tric field equation �Eq. �13��. The corresponding zonal flow
spatial profile is shown in Fig. 5�b�. Zero-mean-frequency
flow driven by charge flux near the mode resonant surface
has an m=n=0 zonal field structure since the ensemble av-
eraged charge flux has an m=n=0 nature. This flow changes
sign across the tearing mode resonant surface thereby impart-
ing no net momentum on spatial average. An important result
here is that even small magnetic fluctuation-induced charge
flux is sufficient to generate a large zonal flow structure.

FIG. 5. �a� Radial electric field dynamics and charge flux over a sawtooth
cycle. t�0 corresponds to times before the sawtooth crash. �b� Radial elec-
tric field profile and E�B flow profile after the sawtooth crash
�t=0.25 ms�. The variation of B with minor radius is ignored here.

FIG. 6. Calculated potential spatial profile at the sawtooth crash
�t=0.25 ms�. It shows the potential well near the resonant surface.
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V. CONCLUSION

In conclusion, resistive tearing mode driven, magnetic
fluctuation-induced particle transport has been experimen-
tally measured in the core of a high-temperature plasma. The
resulting charge flux dominates in the vicinity of the mode
resonant surface and reverses sign across the resonant sur-
face. Modeling indicates the measured charge flux, including
shielding from the ion polarization drift and viscous damp-
ing, can result in the buildup of a significant radial electric
field and electric field shear thereby generating a potential
well. The flow pattern associated with this fluctuation-
induced radial electric field has an m=n=0 zonal flow struc-
ture and can be dissipated on a slower timescale by classic
collisions. Local measurement of electron density gradient is
qualitatively consistent with the radial electric field forma-
tion, which implies that zonal flow also consists of diamag-
netic components.30 Furthermore, we find that three wave
coupling plays an important role in charge flux by changing
the phase between current density and radial magnetic field
fluctuations. Future work will focus on direct measurement
of the electric field and flow implied by the measured charge
flux.
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